Применение углекислого газа в промышленности
Содержание:
- Как влияет диоксид углерода на организм человека
- И скусственные источники углекислого газа
- Объем углекислого газа, его концентрация в воздухе, масса, молекула и физические свойства
- Плотность газов и паров при нормальных условиях
- Транспорт кровью и связь с кислородом.
- Красота и здоровье
- История открытия углекислого газа
- Полезные свойства
- Химические свойства углекислого газа. Химические реакции (уравнения) углекислого газа:
- Желудочно-кишечный тракт
- Дыхание
- Поглотители двуокиси углерода
- Применение
- Применения, основанные на инертности.
- Заключение
Как влияет диоксид углерода на организм человека
Как пищевая добавка углекислый газ признан «условно безопасным» и разрешен к использованию практически во всех странах мира, в том числе и в России. Тем не менее, по утверждению специалистов, чрезмерное употребление, например в составе газированных напитков, диоксида углерода, вред которого заключается в способности увеличивать всасываемость кишечника, может привести к следующим неприятным последствиям:
- быстрое опьянение в результате употребления газированных алкогольных напитков;
- вздутие живота и отрыжка;
- существуют данные, что сильногазированные напитки способны вымывать кальций из костей.
И скусственные источники углекислого газа
Углекислый газ попадает в атмосферу и в результате человеческой жизнедеятельности. Самыми активными источниками в наше время считаются:
- Индустриальные выбросы, происходящие в ходе сгорания топлива на электростанциях и в технологических установках
- Выхлопные газы двигателей внутреннего сгорания транспортных средств: автомобилей, поездов, самолетов и судов.
- Сельскохозяйственные отходы — гниение навоза в больших животноводческих комплексах
Кроме прямых выбросов, существует и косвенное воздействие человека на содержание CO 2 в атмосфере. Это массовая вырубка лесов в тропической и субтропической зоне, прежде всего в бассейне Амазонки.
Несмотря на то, что в атмосфере Земли содержится менее процента диоксида углерода, он оказывает все возрастающее действие на климат и природные явления. Углекислый газ участвует в создании так называемого парникового эффекта путем поглощения теплового излучения планеты и удерживания этого тепла в атмосфере. Это ведет к постепенному, но весьма угрожающему повышению среднегодовой температуры планеты, таянию горных ледников и полярных ледяных шапок, росту уровня мирового океана, затоплению прибрежных регионов и ухудшению климата в далеких от моря странах.
Знаменательно, что на фоне общего потепления на планете происходит значительное перераспределение воздушных масс и морских течений, и в отдельных регионах среднегодовая температура не повышается, а понижается. Это дает козыри в руки критикам теории глобального потепления, обвиняющим ее сторонников в подтасовке фактов и манипуляции общественным мнением в угоду определенным политическим центрам влияния и финансово-экономическим интересам
Человечество пытается взять под контроль содержание углекислого газа в воздухе, были подписаны Киотский и Парижский протоколы, накладывающие на национальные экономики определенные обязательства. Кроме того, многие ведущие автопроизводители автомобилей объявили о сворачивании к 2020-25 годам выпуска моделей с двигателями внутреннего сгорания и переходе на гибриды и электромобили. Однако некоторые ведущие экономики мира, такие, как Китай и США, не торопятся выполнять старые и брать на себя новые обязательства, мотивируя это угрозой уровню жизни в своих странах.
Объем углекислого газа, его концентрация в воздухе, масса, молекула и физические свойства
Главная › Диоксид углерода ›
Молекула углекислого газа
Углекислый газ представляет собой бесцветный газ, без запаха,который относится к неорганическим веществам. Другие названия вещества — диоксид углерода, двуокись углерода, углекислота, диоксид карбона, угольный ангидрид. Молекула углекислого газа состоит из атома углерода, соединенного двойной ковалентной связью с двумя атомами кислорода.
Электронная формула диоксида углерода
Химическая формула — CO2. Молярная масса углекислоты равна 44,01 г/моль. Расстояние от центра центрального атома углерода до каждого центра атома кислорода равно 116,3 пикометров (10 в -12 степени).
Структурная формула молекулы
CO2 при низких температурах и нормальном давлении замерзает и кристаллизуется в белую массу, похожую на снег — «Сухой лед». При превышении температуры (-78.5 °C) начинается его испарение (кипение), минуя фазу жидкостного состояния.
В жидкостное состояние газ преобразуется при высоком давлении (73.8 атм.) и средних температурах (+31.1 °C). Это критическая точка углекислоты.
Подъем температуры или давления после нее приводит к образованию сверхкритической жидкости (Отсутствует различие между жидкостной и газовой фазой). При снижении температуры до -56.6 °C и давления до 5.2 атм. он остается в жидкостной фазе.
Это предельные значения, при изменении которых углекислота переходит в газообразную или твердую фазу (тройная точка состояний).
CO2 не ядовит, но при превышении концентрации в десятки раз, он оказывает удушающее воздействие на живые организмы и вызывает кисловатый вкус и запах (реакция CO2 со слюной и слизистыми образует угольную кислоту).
Углекислый газ в помещении.
Двуокись углерода превышает по плотности кислород на 37 процентов и равна 1,96 кг/м3 при нормальных условиях среды (температура — 273 К, давление — 101 кПа).
Этим физическим свойством объясняется потеря сознания у животных в «Собачьей пещере», расположенной рядом с городом Поццуоли, Италия. Диоксид углерода скапливался из трещин кратеров в нижних слоях пещеры, тем самым достигая больших концентраций.
Туристов приводили туда обычно с собакой, которая в пещере с течением времени теряла сознание. Человек обычно не подвергался воздействию CO2, так как дышал воздухом с более высокого уровня.
Плотность углекислоты, воздуха и кислорода.
Объем углекислого газа в окружающем нас воздухе, составляет 0,04% (406 ppm – 406 частиц на миллион).
Углекислый газ и его физические свойства — объем, плотность, масса, формула Ссылка на основную публикацию
Плотность газов и паров при нормальных условиях
В таблице приведена плотность газов и паров при нормальных условиях – температуре 0°С и нормальном атмосферном давлении (760 мм. рт. ст.). Для некоторых газов, например газа стибина, плотность дана при температуре 15°С и давлении 754 мм. рт. ст.
Значение плотности газов в таблице указано в размерности кг/м 3 для следующих газов и паров: азот N2, аммиак NH3, аргон Ar, ацетилен C2H2, бор фтористый BF3, бутан C4H10, водород: бромистый HBr, йодистый HI, мышьяковистый H3As, селенистый H2Se, сернистый H2S, теллуристый H2Te, фосфористый H3P, хлористый HCl, воздух, гелий He, германия тетрагидрид GeH4, диметиламин (CH3)2NH, дифтордихлорметан CF2Cl2, дициан C2N2, закись азота N2O, кислород O2, кремний фтористый SiF4, гексагидрид Si2H6, тетрагидрид SiH4, криптон Kr, ксенон Xe, метан CH4, метиленхлорид CH3Cl, метиламин CH5N, метиловый эфир C2H6O, метилфторид CH3F, метилхлорид CH3Cl, мышьяк фтористый AsF5, неон Ne, нитрозил фтористый NOF и хлористый NOCl, озон O3, окись азота NO, пропан C3H8, пропилен C3H6, радон Rn, двуокись серы SO2 и гексафторид серы SF2, силан диметил SiH2(CH3)2, метил SiH3CH3, хлористый SIH3Cl, трифтористый SiHF3, стибин SbH3, сульфурил фтористый SO2F2, триметиламин (CH3)3N, триметилбор (CH3)3B, двуокись углерода CO2, окись углерода CO, сероокись COS, фосфор фтористый PF2, оксифторид POF3, пентафторид PF5, фтор F2, фторокись азота NO2, двуокись хлора ClO2, окись хлора Cl2O, хлорокись азота NO2Cl, этан C2H6, этилен C2H4, окись азота NO.
Транспорт кровью и связь с кислородом.
Существует два круга кровообращения в организме: большой артериальный и малый венозный. По большому кругу транспортируется артериальная кровь, насыщенная кислородом. По малому кругу движется венозная кровь, насыщенная CO2.
Транспорт газов кровью
Раньше существовало мнение, что с выдохом углекислый газ в организме человека не остается. Однако как показывают исследования, в артериальной крови всегда присутствует определенное количество углекислоты. Концентрация ее небольшая, в пределах 6,0-7,0%, но если она превышает или наоборот, меньше этого количества, то для организма это плохо. Появляется либо переизбыток O2 в крови (Гипероксия), либо его недостаток (Гипоксемия). Это происходит потому, что обмен этими газами взаимосвязан. Чтобы эритроцит мог поглотить молекулу кислорода и связать ее с гемоглобином, он должен удалить в атмосферу молекулу диоксида углерода.
Зависимость здоровья от содержания углекислоты
При физических нагрузках обменные процессы в клетках ускоряются, чтобы вывести большее количество углекислоты, человеку необходимо чаще и глубже дышать. Процесс происходит рефлекторно. В таких случаях опасно находится в помещении с высокой концентрацией CO2, так как вместе с O2 человек вдыхает двуокись углерода. Это приводит к повышению ее концентрации в крови, а дальше к приступам удушья. Появляются головокружение, тошнота, вялость, учащается сердцебиение и дыхание (Гиперкапния).
Изучая процессы дыхания и газообмена в организме человека, ученые пришли к выводу, что опасен для здоровья не столько недостаток кислорода, сколько избыток диоксида углерода в воздухе.
Высокая концентрация этого вещества в крови приводит к гибели эритроцитов и воспалению стенок кровеносных сосудов. Так происходит если наличие углекислого газа в воздухе более 3 %. При таком уровне человек чувствует себя слабым, его тянет на сон. При концентрации 5% проявляется удушающий эффект, головные боли, головокружение.
Красота и здоровье
Однако CO2 имеет и положительно действие на организм человека. Так диоксид углерода является очень мощным обеззараживающим средством. Его используют в медицине и косметологии. Применяют углекислый газ совместно с другими компонентами, наружно, а также производят инъекции (Карбокси-терапия). Крем или гель, содержащий углекислоту, хорошо обеззараживает и очищает кожу, а непосредственное введение его во внутренние ткани тела помогает бороться с целлюлитом.
Вдыхание воздуха с высоким содержанием углекислоты в определенных пределах или задержка дыхания также приводят к омоложению и задержке процесса старения на клеточном уровне. Увеличенное содержание CO2 в артериальной крови способствует расширению сосудов и как следствие наилучшему и полному снабжению клеток организма кислородом.
История открытия углекислого газа
Углекислый газ – это первый газ, который был описан как дискретное вещество. В семнадцатом веке, фламандский химик Ян Баптист ван Гельмонт (Jan Baptist van Helmont) заметил, что после сжигания угля в закрытом сосуде масса пепла была намного меньше массы сжигаемого угля. Он объяснял это тем, что уголь трансформируется в невидимую массу, которую он назвал «газ».
Свойства углекислого газа были изучены намного позже в 1750г. шотландским физиком Джозефом Блэком (Joseph Black).
Он обнаружил, что известняк (карбонат кальция CaCO3) при нагреве или взаимодействии с кислотами, выделяет газ, который он назвал «связанный воздух». Оказалось, что «связанный воздух» плотнее воздуха и не поддерживает горение.
CaCO3 + 2HCl = СО2 + CaCl2 + H2O
Пропуская «связанный воздух» т.е. углекислый газ CO2 через водный раствор извести Ca(OH)2 на дно осаждается карбонат кальция CaCO3.
CaO + H2O = Ca(OH)2
Ca(OH)2 + CO2 = CaCO3 + H2O
Полезные свойства
Природная газированная вода известна человеку еще с древних времен. Изначально ее использовали только в качестве лечебного средства. Все желающие могли приехать к природному источнику, набрать воды и даже искупаться в ней. В XVIII веке вода начала разливаться в промышленных масштабах. Но поскольку такое предпринимательство оказалось невыгодным, так как жидкость быстро выдыхалась и теряла большую часть своих полезных свойств, было принято решение газировать ее искусственным путем.
Положительное влияние на организм может оказать только газированная минеральная вода. Вред или польза от этого продукта будет зависеть от количества и качества употребляемого напитка. В целом природная минеральная вода назначается врачом в лечебных целях. Не рекомендуется злоупотреблять этим напитком, несмотря на то, что он способствует выработке желудочного сока при пониженной кислотности, поддерживает щелочной баланс, активизирует работу ферментов, предотвращает вымывание кальция из организма.
Помимо природной газированной воды, полезными для организма могут быть и сладкие напитки на основе лекарственных трав («Тархун», «Байкал», «Саяны»).
Химические свойства углекислого газа. Химические реакции (уравнения) углекислого газа:
Диоксид углерода относится к кислотным оксидам, поэтому для него характерны следующие химические реакции:
1. реакция взаимодействия оксида углерода (IV) и водорода:
CO2 + 4H2 → CH4 + 2H2O (t ~ 200 °C, kat = Cu2O).
В результате реакции образуются метан и вода.
2. реакция взаимодействия оксида углерода (IV) и углерода:
CO2 + C ⇄ 2CO (t = 700-1000 °C).
В результате реакции образуется оксид углерода (II). Реакция протекает при взаимодействии углекислого газа с раскаленными углями.
3. реакция взаимодействия оксида углерода (IV) и магния:
CO2 + 2Mg → 2MgO + C (t ~ 500 °C).
В результате реакции образуются оксид магния и углерод.
4. реакция взаимодействия оксида углерода (IV) и гафния:
Hf + CO2 → HfC + HfO2 (t = 800-1000 °C).
В результате реакции образуются карбид гафния и оксид гафния.
5. реакция взаимодействия оксида углерода (IV) и германия:
Ge + CO2 → GeO + CO (t = 700-900 °C).
В результате реакции образуются оксид германия и оксид углерода (II).
6. реакция взаимодействия оксида углерода (IV) и цинка:
Zn + CO2 → ZnO + CO (t = 800-950 °C).
В результате реакции образуются оксид цинка и оксид углерода (II).
7. реакция взаимодействия оксида углерода (IV) и индия:
2In + CO2 → In2O + CO (t ~ 850 °C).
В результате реакции образуются оксид индия и оксид углерода (II).
8. реакция взаимодействия оксида углерода (IV) и циркония:
2Zr + CO2 → ZrC + ZrO2 (t = 800-100 °C).
В результате реакции образуются карбид циркония и оксид циркония.
9. реакция взаимодействия оксида углерода (IV) и вольфрама:
W + 2CO2 → WO2 + 2CO (t ~ 1200 °C).
В результате реакции образуются оксид вольфрама и оксид углерода (II).
10. реакция взаимодействия оксида углерода (IV) и оксида лития:
Li2O + CO2 → Li2CO3.
В результате реакции образуется карбонат лития.
11. реакция взаимодействия оксида углерода (IV) и оксида натрия:
Na2O + CO2 → Na2CO3 (t = 450-550 °C).
В результате реакции образуется карбонат натрия.
12. реакция взаимодействия оксида углерода (IV) и оксида калия:
K2O + CO2 → K2CO3 (t ~ 400 °C).
В результате реакции образуется карбонат калия.
13. реакция взаимодействия оксида углерода (IV) и оксида бария:
BaO + CO2 → BaCO3.
В результате реакции образуется карбонат бария.
14. реакция взаимодействия оксида углерода (IV) и оксида кальция:
CaO + CO2 → CaCO3.
В результате реакции образуется карбонат кальция.
15. реакция взаимодействия карбоната кальция, оксида углерода (IV) и воды:
CaCO3 + CO2 + H2O → Ca(HCO3)2.
В результате реакции образуется гидрокарбонат кальция.
16. реакция взаимодействия оксида углерода (IV) и оксида магния:
MgO + CO2 → MgCO3.
В результате реакции образуется карбонат магния.
17. реакция взаимодействия оксида углерода (IV) и оксида кремния (II):
SiO + CO2 → SiO2 + CO (t ~ 500 °C).
В результате реакции образуются оксид кремния (IV) и оксид углерода (II).
18. реакция взаимодействия оксида углерода (IV) и воды:
CO2 + H2O ⇄ H2CO3.
В результате реакции образуется угольная кислота.
19. реакция взаимодействия оксида углерода (IV) и гидроксида лития:
2LiOH + CO2 → Li2CO3 + H2O.
В результате реакции образуются карбонат лития и вода. В ходе реакции используется концентрированный раствор гидроксида лития.
20. реакция взаимодействия оксида углерода (IV) и гидроксида калия:
KOH + CO2 → KHCO3,
2KOH + CO2 → K2CO3 + H2O.
В первом случае в результате реакции образуются гидрокарбонат калия, во втором случае – карбонат калия и вода. Реакция протекает в первом случае в этаноле и используется разбавленный раствор гидроксида калия, во втором используется концентрированный раствор гидроксида калия.
21. реакция взаимодействия оксида углерода (IV) и гидроксида натрия:
NaOH + CO2 → NaHCO3,
2NaOH + CO2 → Na2CO3 + H2O.
В первом случае в результате реакции образуются гидрокарбонат натрия, во втором – карбонат натрия и вода. В ходе первой реакции используется разбавленный раствор гидроксида натрия, в ходе второй – концентрированный раствор гидроксида натрия.
22. реакция взаимодействия оксида углерода (IV) и гидроксида кальция:
Ca(OH)2 + CO2 → CaCO3 + H2O.
В результате реакции образуются карбонат кальция и вода.
23. реакция взаимодействия оксида углерода (IV) и гидроксида бария:
Ba(OH)2 + CO2 → BaCO3 + H2O.
В результате реакции образуются карбонат бария и вода.
24. реакция взаимодействия оксида углерода (IV) и метана:
CH4 + CO2 → 2CO + 2H2 (t = 800-900 °C, kat = NiO, нанесенный на Al2O3).
В результате реакции образуются оксид углерода (II) и вода.
25. реакция термического разложения оксида углерода (IV):
2CO2 → 2CO + O2 (t > 2000 °C).
В результате реакции образуются оксид углерода (II) и кислород.
26. реакция фотосинтеза:
6CO2 + 6H2O → C6H12O6 + 6O2 (hv, kat = хлорофилл).
В результате реакции образуются глюкоза и кислород.
Желудочно-кишечный тракт
Углекислый газ в организм попадает не только при дыхании, но и вместе с пищей. Углерод содержится практически во всех органических веществах, наибольшая концентрация содержится в продуктах растительного происхождения. Больше всего его образуется при расщеплении легкоусвояемых углеводов.
Углекислота влияет на химический состав жидкости в теле человека, хотя и не так значительно, но при сильном понижении или превышении может оказывать губительное воздействие. В организме почти все процессы жизнедеятельности клеток происходят при определенном уровне кислотно-щелочного баланса, который скорее близок к нейтральной воде, чем к кислоте. Наличие повышенной концентрации CO2 в употребляемых продуктах сильно меняет состав жидкости в теле человека. Это также влияет на протекание биохимических процессов. Происходит нарушение обмена веществ, гибель клеток или неправильный процесс их деления, что очень опасно.
Продукты и их кислотно-щелочной баланс
Поэтому продукты, содержащие CO2 в свободном состоянии (газировка) во многих странах запрещены к продаже.
Наибольший вред они наносят организму:
- При любых заболеваниях желудочно-кишечного тракта, в том числе хронических. Так как при приеме в пищу таких продуктов, происходит раздражение слизистой желудка. Они стимулируют выработку ферментов и повышают кислотность желудочного сока, что приводит к обострению имеющихся воспалительных процессов, образованию или углублению язвочек.
- Детям, до трех лет не стоит давать такие продукты, потому что их организм еще не совсем сформировался. Поэтому углекислота может привести к нарушению обмена веществ в организме и в будущем стать причиной высокой хрупкости костей.
- Диоксид углерода может вызвать аллергическую реакцию у человека.
- При наличии лишнего веса нельзя употреблять такие продукты, так как полнота, это следствие нарушения обмена веществ. А употребление продуктов с высоким содержанием CO2 приведет только к усугублению ситуации.
Во многих западных странах принят закон, в соответствии с которым наличие углекислого газа в продуктах не должно превышать 0,4%. Исключение дается только простой минеральной воде с газом, но только в том случае, если она содержит незначительное количество диоксида углерода. Но и это допустимо только по разрешению или рекомендации врача, особенно при болезнях желудка.
Дыхание
При изучении дыхания и образования диоксида углерода в теле человека иногда путают углекислый и угарный газы между собой. Угарный газ имеет химическую формулу CO и совершенно другие свойства.
Дыхание происходит следующим образом — человек сначала выдыхает углекислоту, а потом вдыхает кислород:
- В результате биохимических процессов при расщеплении жиров и белков в клетках происходит процесс образования углекислого газа в организме человека. Этот газ выделяется из клеток в капилляры, а затем поступает в кровь. При накоплении крови газом нервная система подает сигнал в мозг о выделении излишков двуокиси углерода за пределы нашего тела. Красные кровяные тельца (эритроциты) транспортируют молекулы углекислоты в виде химических соединений бикарбонатов и связанных с гемоглобином к альвеолам легких.
- В альвеолах происходит обмен молекул углекислого газа на молекулы O2, которые распространяются по всему организму. Эритроциты переносят молекулы кислорода к органам и тканям, связывая его с гемоглобином, а взамен опять забирают продукт жизнедеятельности этих клеток – CO2.
Процесс газообмена.
Доказанным фактом считается то, что углекислота, это основатель дыхательных процессов, а не кислород, как считалось ранее. Двуокись углерода является необходимым газом для дыхания человека наравне с O2.
Газообмен в альвеолах
При выдохе человек выдыхает не только CO2, из легких уходит также избыточный O2. Рефлекс дыхания разделяется в 2 этапа:
- При выдыхании происходит снижение давления в легких, купол диафрагмы поднимается, легкие сжимаются, концентрация CO2 в крови повышается. Кровь движется по венам и окрашивается темный, почти черный цвет.
- За выдохом идет вдох. При вдохе грудная клетка расширяется, диафрагма опускается. Осуществляется отдача от гемоглобина через альвеолы в легкие и выброс в атмосферу диоксида углерода. Там же в альвеолах происходит прием гемоглобином молекулы O2. Кровь переходит на следующий круг и движется по артериям. Она окрашивается в ярко-розовый цвет.
Нормальный здоровый человек дышит ровно и регулярно. Учащенное дыхание или с задержкой, если это не вызвано большими физическими или психологическими нагрузками, считается сигналом о серьезных заболеваниях организма.
Поглотители двуокиси углерода
Поглотителями называют любые искусственные или природные системы, которые впитывают из воздуха углекислый газ. Поглотитель — это структура, которая вбирает из воздуха больше CO2 чем выбрасывает в него.
Природные поглотители
Леса способны воздействовать на количество двуокиси углерода в воздухе. Они могут быть и поглотителями, и источниками выбросов параллельно (при вырубке). Когда деревья увеличиваются, а лес растет, то углекислый газ поглощается. Данный процесс считается основой развития биомассы. Выходит, что прогрессирующий лес выступает поглотителем.
Лес северного полушария
При сжигании и уничтожении леса основная доля накопленного углерода опять преобразуется в углекислый газ. В итоге лес снова является источником СО2.
Фитопланктон также является поглотителем углекислого газа на земле. При этом большая часть поглощенного углерода, передаваясь по пищевой цепочке, остается в океане.
Искусственные поглотители
Самыми известными поглотителями СО2 считаются: раствор едкого калия, натронная известь и асбест, едкий натр.
Эти соединения при протекании химических реакций связывают углекислоту, преобразовывая ее в другие соединения. Существуют установки, которые улавливают углекислый газ из выбросов электростанций и преобразуют его в жидкое или твердое состояние с последующим применением в промышленности. Производятся испытания закачки углекислого газа, растворенного в воде, в базальтовые породы под землей. В процессе реакции образуется твердый минерал.
Станция закачки углекислого газа под землю
Применение
Пищевая добавка Е290 применяется в производстве газированных напитков, в составе разрыхлителя для теста, выпечки и кондитерских изделий, при заморозке свежих продуктов, мороженного.
В криохирургии используется как одно из основных веществ для криоабляции новообразований.
Жидкая углекислота широко применяется в системах пожаротушения и в огнетушителях. Автоматические углекислотные установки для пожаротушения различаются по системам пуска, которые бывают пневматическими, механическими или электрическими.
Устройство для подачи углекислого газа в аквариум может включать в себя резервуар с газом. Простейший и наиболее распространенный метод получения углекислого газа основан на конструкции для изготовления алкогольного напитка браги. При брожении, выделяемый углекислый газ вполне может обеспечить подкормку аквариумных растений.
Углекислый газ используется для газирования лимонада и газированной воды. Углекислый газ используется также в качестве защитной среды при сварке проволокой, но при высоких температурах происходит его распад с выделением кислорода. Выделяющийся кислород окисляет металл. В связи с этим приходится в сварочную проволоку вводить раскислители, такие как марганец и кремний. Другим следствием влияния кислорода, также связанного с окислением, является резкое снижение поверхностного натяжения, что приводит, среди прочего, к более интенсивному разбрызгиванию металла, чем при сварке в инертной среде.
Углекислота в баллончиках применяется в пневматическом оружии (в газобаллонной пневматике) и в качестве источника энергии для двигателей в авиамоделировании.
Хранение углекислоты в стальном баллоне в сжиженном состоянии выгоднее, чем в виде газа. Углекислота имеет сравнительно низкую критическую температуру +31 °С. В стандартный 40-литровый баллон заливают около 30 кг сжиженного углекислого газа, и при комнатной температуре в баллоне будет находиться жидкая фаза, а давление составит примерно 6 МПа (60 кгс/см2). Если температура будет выше +31 °С, то углекислота перейдёт в сверхкритическое состояние с давлением выше 7,36 МПа. Стандартное рабочее давление для обычного 40-литрового баллона составляет 15 МПа (150 кгс/см2), однако он должен безопасно выдерживать давление в 1,5 раза выше, то есть 22,5 МПа, — таким образом, работа с подобными баллонами может считаться вполне безопасной.
Твёрдая углекислота — «сухой лёд» — используется в качестве хладагента в лабораторных исследованиях, в розничной торговле, при ремонте оборудования (например: охлаждение одной из сопрягаемых деталей при посадке внатяг) и т. д. Для сжижения углекислого газа и получения сухого льда применяются углекислотные установки.
Польза и вред
Е290 считается нетоксичным (4 класс опасности ГОСТ 12.1.007), но при вдыхании диоксида углерода в повышенных концентраций в воздухе по воздействию на воздуходышащие живые организмы его относят к удушающим газам.
Незначительные повышения концентрации, вплоть до 2–4 %, в помещениях приводят к развитию у людей сонливости и слабости. Опасными для здоровья концентрациями считаются концентрации около 7–10 %, при которых развиваются симптомы удушья, проявляющиеся в виде головной боли, головокружения, расстройстве слуха и в потере сознания (симптомы, сходные с симптомами высотной болезни), эти симптомы развиваются, в зависимости от концентрации, в течение времени от нескольких минут до одного часа.
При вдыхании воздуха с очень высокими концентрациями газа смерть наступает очень быстро от удушья, вызванного гипоксией.
Несмотря на то, что даже концентрация 5–7 % CO₂ в воздухе несмертельна, но при концентрации 0,1 % (такое содержание углекислого газа иногда наблюдается в воздухе мегаполисов), люди начинают чувствовать слабость, сонливость. Это показывает, что даже при высоком уровне кислорода, большая концентрация CO2 существенно влияет на самочувствие человека.
Применения, основанные на инертности.
СО 2 применяется как антиоксидант при долговременном хранении многих пищевых продуктов: сыра, мяса, сухого молока, орехов, растворимых чая, кофе, какао и т.д. Как вещество, подавляющее горение, СО 2 используют при хранении и транспортировке горючих материалов, например ракетного топлива, масел, бензина, красок, лаков, растворителей. Он используется как защитная среда при электросварке углеродистых сталей с целью получения однородного прочного шва, при этом сварочные работы оказываются дешевле, чем при использовании инертных газов.
СО 2 – одно из наиболее эффективных средств тушения пожаров, возникающих при воспламенении горючих жидкостей и электрических пробоях. Выпускают разные углекислотные огнетушители: от портативных емкостью не более 2 кг до стационарных установок автоматической подачи с общей емкостью баллонов до 45 кг или газовых резервуаров низкого давления емкостью до 60 т СО 2 . Жидкий СО 2 , находящийся в таких огнетушителях под давлением, при выпуске образует смесь из снега и холодного газа; последний обладает большей плотностью, чем воздух, и вытесняет его из зоны горения. Эффект усиливается еще и охлаждающим действием снега, который, испаряясь, переходит в газообразный СО 2 .
Заключение
Очень жаль, что система образования в наших странах не уделяет столь важного внимания для пересмотра учебников в школах и институтах. Полученные знания об углекислоте необходимо доводить со школьной скамьи до учащихся образовательных учреждений
Знания многих процессов, протекающих в организме с участием диоксида углерода, могли бы научить нас правильному питанию и ведению здорового образа жизни. Продление жизни нашего организма тесно связано с наличием углекислого газа в нем, поэтому применяя на практике полученные знания, мы бы могли обеспечить себе здоровую и долгую жизнь.